You know how Google’s new feature called AI Overviews is prone to spitting out wildly incorrect answers to search queries? In one instance, AI Overviews told a user to use glue on pizza to make sure the cheese won’t slide off (pssst…please don’t do this.)
Well, according to an interview at The Vergewith Google CEO Sundar Pichai published earlier this week, just before criticism of the outputs really took off, these “hallucinations” are an “inherent feature” of AI large language models (LLM), which is what drives AI Overviews, and this feature “is still an unsolved problem.”
So with reddit we had several pieces of information that went along with every post.
User, community along with up, and downvotes would inform the majority of users as to whether an average post was actually information or trash. It wasn’t perfect, because early posts always got more votes and jokes in serious topics got upvotes, bit the majority of the examples of bad posts like glue on food came from joke subs. If they can’t even filter results by joke sub, there is no way they will successfully handle saecasm.
Only basing results on actual professionals won’t address the sarcasm filtering issue for general topics. It would be a great idea for a serious model that is intended to only return results for a specific set of topics.
This is true, but when we’re talking about something that limited you’ll probably get better results with less work by using human-curated answers rather than generating a reply with an LLM.
Yes, that would be the better solution. Maybe the humans could write down their knowledge and put it into some kind of journal or something!